Towards a Formal, Quantitative Molecular Diagnostic Framework

Leslie G. Biesecker

Branch Chief & Senior Investigator

Medical Genomics & Metabolic Genetics Branch

National Human Genome Research Institute

March 14, 2017

The Task

- Determine the pathogenicity of a variant
 - The probability that the variant confers a disease liability
- Make a diagnosis in the patient
 - Use the variant to decide if the patient has the disease

Three Separate Functions

- Critical to distinguish pathogenicity from diagnosis
 - Determine what is known or knowable about the variant
 - Clinical laboratory function
 - Use the variant to make a diagnosis (or not)
 - Clinician function
 - Use the diagnosis to change management
 - Clinician function

Nature of the Difficulty

- Highly dimensional problem
- All aspects associated with uncertainty
- Heterogeneity of underlying data
- Utility Implications
- Values

Nature of the Difficulty

- Highly dimensional problem
 - Break down into components
- All aspects associated with uncertainty
 - Address uncertainty
- Heterogeneity of underlying data
 - Weight evidence objectively
- Utility Implications
 - Decouple from utility
- Values
 - Preserve professional judgment where appropriate

The Question That Will Not Be Discussed

- What error do you want to make?
- What error will you make without genomics?

Key to Variant Assessment

		Condition (as determined by "Gold standard")		
	Total population	Condition positive	Condition negative	Prevalence = Σ Condition positive Σ Total population
Test outcome	Test outcome positive	True positive	False positive (Type I error)	Positive predictive value (PPV, Precision) = Σ True positive Σ Test outcome positive
	Test outcome negative	False negative (Type II error)	True negative	False omission rate (FOR) = Σ False negative Σ Test outcome negative
	Positive likelihood ratio (LR+) = TPR/FPR	True positive rate (TPR, Sensitivity, Recall) = Σ True positive Σ Condition positive	False positive rate (FPR, Fall-out) = Σ False positive Σ Condition negative	$\frac{\text{Accuracy (ACC)} =}{\Sigma \text{ True positive} + \Sigma \text{ True negative}}$ Σ Total population

Key to Variant Assessment

For primary variants higher sensitivity For secondary variants, higher PPV

Example of Breaking into Components

© American College of Medical Genetics and Genomics ACMG STANDARDS AND GUIDELINES

Genetics **inMedicine**

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the **Association for Molecular Pathology**

Sue Richards, PhD¹, Nazneen Aziz, PhD^{2,16}, Sherri Bale, PhD³, David Bick, MD⁴, Soma Das, PhD⁵, Julie Gastier-Foster, PhD^{6,7,8}, Wayne W. Grody, MD, PhD^{9,10,11}, Madhuri Hegde, PhD¹², Elaine Lyon, PhD¹³, Elaine Spector, PhD¹⁴, Karl Voelkerding, MD¹³ and Heidi L. Rehm, PhD¹⁵; on behalf of the ACMG Laboratory Quality Assurance Committee

General Approach

Adaptation of IARC scale

 Pseudo-quantitative, non-linear, asymmetric assessment of likelihood of pathogenicity

Pathogenicity

- Making real progress
- ACMG Richards et al highly useful
- Can be much better in the future
 - Short, mid, and longer term approaches to make it better

Math to English

• P(A|B) = [P(B|A)*P(A)]/P(B)

 The probability of A given B equals the probability of B given A times the probability of A all divided by the probability of B

Example: Bean Bags

Bayesian Quantitative Genomics Approach

- Assign variant a prior probability of pathogenicity
 - Dependent on DNA search space
 - Not dependent on ascertainment or phenotype
- Then modify this prior based on a piece of evidence
 - Population frequency
 - Bioinformatics
 - Phenotype
 - Etc.

Prior

- Each individual harbors 100 variants that are pathogenic for a Mendelian disorder
- Average person harbors 3 x 10⁶ variants
- Any SNV selected at random, the prior probability that it is pathogenic is $100 \ / \ 3 \times 10^6$, or 3.33×10^{-5}

Conditional #1 Variant is in exon or +/- 2 bp

	Pathogenic	Non-Pathogenic
Prior	3 x 10 ⁻⁵	~1
Conditional	0.95*	0.015**
Joint	3.16 x 10 ⁻⁵	0.015
Posterior	0.0021	.9979

^{*}Estimate that 95% of pathogenic variants for mendelian disorders are in exon or canonical splice bp

^{**}Estimate that 1.5% of genome is exons +/- 2 bp

Conditional #2 Variant is rare

	Pathogenic	Non-Pathogenic
Prior	0.0021	~1
Conditional	0.90*	0.25**
Joint	0.0019	0.25
Posterior	0.0075	0.9925

^{*90%} of pathogenic variants are this frequency or rarer

^{**25%} of all variants in genome are this freq or rarer

Etc, etc.

- After all evidence on the variant the posterior probability of pathogenicity is 0.88 (VUS)
- Now what?

Etc, etc.

- After all evidence on the variant the posterior probability of pathogenicity is 0.88 (VUS)
- Now what?
- Look at the patient
- Variant in PMS2
- Patient is 44 years old and has had 6 polyps removed + 3 relatives died colon cancer before 60

Conditional #N Phenotype

	Pathogenic	Non-Pathogenic
Prior	0.88	0.12
Conditional	0.50*	0.03**
Joint	0.44	0.0036
Posterior	0.992	0.008

^{*}Given pathogenic variant in PMS2 50% patients have this kind of history

^{*}Given no pathogenic variant in PMS2, 3% have this history

A Different Story

- After all evidence on the variant the posterior probability of pathogenicity is 0.88 (VUS)
- Now what?
- Look at the patient
- Variant in *PMS2*
- Patient is 74 years old and has had no polyps or colon cancer

Conditional #N Phenotype

	Pathogenic	Non-Pathogenic
Prior	0.88	0.12
Conditional	0.05*	0.95**
Joint	0.044	0.114
Posterior	0.28	0.72

^{*}Given pathogenic variant in PMS2 5% patients have negative history

^{*}Given no pathogenic variant in PMS2, 95% have negative history

Bayesian Quantitative Genomics Approach

Benefits

- Separates prior from conditional probabilities
 - Prevents double counting data
 - Facilitates adjusting data
- Highly amenable to automation
- Gets us out of "seat of the pants"
- Uncertainty readily addressed

Downsides

- Foreign concept to most clinicians and labs
 - Will require some education
- We don't today have most of the needed data

The Future of Genomic Analysis

- Separate pathogenicity from diagnosis
- Basic extract of clinical data from EHR to lab
- Sequence
- Semiautomated Bayesian analysis of every variant in genome
- CDS tools for interpreting clinicians
 - Post-hoc phenotype driven by genotype supplants pre-hoc phenotype data
- Iterative CDS analyses over lifetime of patient

Will it all be Automated?

"A computer lets you make more mistakes faster than any invention in human history - with the possible exceptions of handguns and tequila."

Mitch Ratliff

Read This!

the theory. that would mot die 🛴 how bayes' rule cracked the enigma code, hunted down russian submarines & emerged triumphant from two & centuries of controversy sharon bertsch mcgrayne

Hat tip: Wendy Rubinstein